Why do we not profit from our long-existing classical robotics knowledge and look for some alternative way for data collection? The situation ignoring all existing methods might be such a waste. This article argues that a dataset created using a classical robotics algorithm is a crucial part of future development. This developed classic algorithm has a perfect domain adaptation and generalization property, and most importantly, collecting datasets based on them is quite easy. It is well known that current robot skill-learning approaches perform exceptionally badly in the unseen domain, and their performance against adversarial attacks is quite limited as long as they do not have a very exclusive big dataset. Our experiment is the initial steps of using a dataset created by classical robotics codes. Our experiment investigated possible trajectory collection based on classical robotics. It addressed some advantages and disadvantages and pointed out other future development ideas.
翻译:为什么我们没有从我们长期存在的古典机器人知识和寻找数据收集的替代方法中获益?忽视所有现有方法的情况可能是如此的浪费。 本文认为,使用古典机器人算法创建的数据集是未来发展的一个关键部分。 这一开发的经典算法具有完美的域适应和概括属性,最重要的是,基于这些特性收集数据集非常容易。 众所周知,当前机器人技能学习方法在无形领域表现极差,只要它们没有非常独家的大型数据集,其对抗对抗性攻击的性能就非常有限。 我们的实验是使用古典机器人代码创建的数据集的最初步骤。 我们的实验调查了基于古典机器人的可能轨迹收集。它解决了一些利弊,并指出了其他未来发展理念。