Cyber-Physical Systems (CPSs), e.g., elevator systems and autonomous driving systems, are progressively permeating our everyday lives. To ensure their safety, various analyses need to be conducted, such as anomaly detection and time-to-event analysis (the focus of this paper). Recently, it has been widely accepted that digital Twins (DTs) can serve as an efficient method to aid in the development, maintenance, and safe and secure operation of CPSs. However, CPSs frequently evolve, e.g., with new or updated functionalities, which demand their corresponding DTs be co-evolved, i.e., in synchronization with the CPSs. To that end, we propose a novel method, named PPT, utilizing an uncertainty-aware transfer learning for DT evolution. Specifically, we first pretrain PPT with a pretraining dataset to acquire generic knowledge about the CPSs, followed by adapting it to a specific CPS with the help of prompt tuning. Results highlight that PPT is effective in time-to-event analysis in both elevator and ADSs case studies, on average, outperforming a baseline method by 7.31 and 12.58 in terms of Huber loss, respectively. The experiment results also affirm the effectiveness of transfer learning, prompt tuning and uncertainty quantification in terms of reducing Huber loss by at least 21.32, 3.14 and 4.08, respectively, in both case studies.
翻译:暂无翻译