Quantum cryptography leverages many unique features of quantum information in order to construct cryptographic primitives that are oftentimes impossible classically. In this work, we build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities. We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before. We define and construct several fundamental cryptographic primitives with key-revocation capabilities, namely pseudorandom functions, secret-key and public-key encryption, and even fully homomorphic encryption, assuming the quantum subexponential hardness of the learning with errors problem. Central to all our constructions is our approach for making the Dual-Regev encryption scheme (Gentry, Peikert and Vaikuntanathan, STOC 2008) revocable.
翻译:量子加密法利用量子信息的许多独特特征,以构建通常不可能古老的加密原始数据。 在这项工作中,我们以量子力学的无克隆原则为基础,并设计了具有关键检索能力的加密计划。我们认为,秘密钥匙被代表为量子状态的计划是量子状态的保证,一旦秘密钥匙从用户手中成功被撤销,它们就不再有能力履行与以前相同的功能。我们定义和构建了若干具有关键恢复能力的基本加密原始数据,即伪冒功能、秘密和公用钥匙加密,甚至完全同质加密,假设学习的量子爆炸硬度与错误问题。我们所有构造的核心是我们使双Regev加密计划(Gentry, Peikert and Vaikuntananathan, STOC, 2008)可以撤销的方法。</s>