We study the problem of nonstochastic bandits with infinitely many experts: A learner aims to maximize the total reward by taking actions sequentially based on bandit feedback while benchmarking against a countably infinite set of experts. We propose a variant of Exp4.P that, for finitely many experts, enables inference of correct expert rankings while preserving the order of the regret upper bound. We then incorporate the variant into a meta-algorithm that works on infinitely many experts. We prove a high-probability upper bound of $\tilde{\mathcal{O}} \big( i^*K + \sqrt{KT} \big)$ on the regret, up to polylog factors, where $i^*$ is the unknown position of the best expert, $K$ is the number of actions, and $T$ is the time horizon. We also provide an example of structured experts and discuss how to expedite learning in such case. Our meta-learning algorithm achieves the tightest regret upper bound for the setting considered when $i^* = \tilde{\mathcal{O}} \big( \sqrt{T/K} \big)$. If a prior distribution is assumed to exist for $i^*$, the probability of satisfying a tight regret bound increases with $T$, the rate of which can be fast.


翻译:我们用无数专家研究无孔不入的强盗问题:一个学习者的目的是通过根据强盗反馈按顺序采取行动来最大限度地提高总奖赏,同时对可数无限的专家群进行基准衡量。我们建议了一个Exp4.P的变式,该变式对少数专家来说,可以推断正确的专家排名,同时保留上层悔恨的顺序。我们然后将变式纳入一个对无限多专家起作用的元等级中。我们证明,在遗憾上,我们是一个高概率上限,即$-T=$=美元=美元=sqrockalt{KT}\big。对于当美元=美元=美元=美元=美元=美元=smacrtal{KT}时考虑时,我们最强烈的遗憾上限是:美元是最佳专家的未知位置,美元是行动的数量,而美元是时间框架。我们还举了一个结构化专家的例子,并讨论如何在这类情况下加快学习。我们的新学习算算算算法在考虑的设置时,当美元=美元=美元=美元=QQQQQQ___Brmamas a transad dead delideal lade a firde a fir delide a delistal delist ex ax ax ax rlde ax ax ax ax ax ax rl ax ex ax ex a tri)

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员