Due to its significance in terms of wave phenomena a considerable effort has been put into the design of preconditioners for the Helmholtz equation. One option to derive a preconditioner is to apply a multigrid method on a shifted operator. In such an approach, the wavenumber is shifted by some imaginary value. This step is motivated by the observation that the shifted problem can be more efficiently handled by iterative solvers when compared to the standard Helmholtz equation. However, up to now, it is not obvious what the best strategy for the choice of the shift parameter is. It is well known that a good shift parameter depends sensitively on the wavenumber and the discretization parameters such as the order and the mesh size. Therefore, we study the choice of a near optimal complex shift such that an FGMRES solver converges with fewer iterations. Our goal is to provide a map which returns the near optimal shift for the preconditioner depending on the wavenumber and the mesh size. In order to compute this map, a data driven approach is considered: We first generate many samples, and in a second step, we perform a nonlinear regression on this data. With this representative map, the near optimal shift can be obtained by a simple evaluation. Our preconditioner is based on a twogrid V-cycle applied to the shifted problem, allowing us to implement a semi matrix-free method. The performance of our preconditioned FGMRES solver is illustrated by several benchmark problems with heterogeneous wavenumbers in two and three space dimensions.


翻译:由于波浪现象的意义,在设计赫尔姆霍尔茨等式的先决条件值时已经付出了相当大的努力。 获得一个先决条件的选项之一是对已转移的操作员应用多格方法。 在这种方法中,波数被一些想象值所改变。 这一步骤的动因是观察到,与标准赫尔姆霍尔茨等式相比,被转移的问题可以由迭代解答者更有效地处理。 然而,到目前为止,选择转移参数的最佳战略是什么。 众所周知, 良好的转变参数取决于波数和离散参数, 如秩序和网目大小。 因此, 我们研究如何选择一种接近最佳的复杂变化, 使女性生殖器求解者求解者能与较少的迭代值相融合。 我们的目标是提供一张地图, 返回取决于波数和网目大小的前提条件的近最佳转变。 为了对这个地图进行校正, 考虑一种数据驱动方法: 我们首先生成了许多样本, 第二步是进行非线性流流流变, 我们用一个非线性流数的精确度转换方法, 使用一个最优化的预估测图 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员