We prove that the medial axis of closed sets is Hausdorff stable in the following sense: Let $\mathcal{S} \subseteq \mathbb{R}^d$ be (fixed) closed set (that contains a bounding sphere). Consider the space of $C^{1,1}$ diffeomorphisms of $\mathbb{R}^d$ to itself, which keep the bounding sphere invariant. The map from this space of diffeomorphisms (endowed with some Banach norm) to the space of closed subsets of $\mathbb{R}^d$ (endowed with the Hausdorff distance), mapping a diffeomorphism $F$ to the closure of the medial axis of $F(\mathcal{S})$, is Lipschitz. This extends a previous stability result of Chazal and Soufflet on the stability of the medial axis of $C^2$ manifolds under $C^2$ ambient diffeomorphisms.
翻译:我们证明封闭组的介质轴心在以下意义上是Hausdorff稳定的:让 $\ mathcal{S}\ subseteq \ mathb{R ⁇ d$ (固定的) 封闭组(包含一个捆绑的球体) 。 考虑$\ mathb{R ⁇ d$ 的面积为$ 1,1美元 diffeomismism 的面积, 以保持交错的球体。 从这个空间( 以某种Banach规范) 的平面体块到 $\ mathbb{R ⁇ d$ (与Hausdorf 距离相适应的) 的封闭区块空间的地图, 绘制一个位于 $F (\ mathcal{S} $ 的介质轴关闭点的 。 这是Lipschitz。 这扩大了Chazal 和 Sofflet 先前的稳定结果, 在 $C $2$ 美元 下 方块 的介质轴 的稳定性 。