We develop a weak-form sparse identification method for interacting particle systems (IPS) with the primary goals of reducing computational complexity for large particle number $N$ and offering robustness to either intrinsic or extrinsic noise. In particular, we use concepts from mean-field theory of IPS in combination with the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy) to provide a fast and reliable system identification scheme for recovering the governing stochastic differential equations for an IPS when the number of particles per experiment $N$ is on the order of several thousand and the number of experiments $M$ is less than 100. This is in contrast to existing work showing that system identification for $N$ less than 100 and $M$ on the order of several thousand is feasible using strong-form methods. We prove that under some standard regularity assumptions the scheme converges with rate $\mathcal{O}(N^{-1/2})$ in the ordinary least squares setting and we demonstrate the convergence rate numerically on several systems in one and two spatial dimensions. Our examples include a canonical problem from homogenization theory (as a first step towards learning coarse-grained models), the dynamics of an attractive-repulsive swarm, and the IPS description of the parabolic-elliptic Keller-Segel model for chemotaxis.
翻译:我们为互动粒子系统开发了一种微弱的微薄识别方法(IPS),其主要目标是降低大型粒子数的计算复杂性($$),并为内在或外部噪音提供稳健性;特别是,我们使用IPS中位理论的概念,结合非线性动态算法(WSINDI)的微软分散识别(WSINDI),提供一种快速和可靠的系统识别办法,以便在每个实验的粒子数量大约为几千美元,而实验数量不到100美元的情况下,为IPS提供一种调节性差异方程式;我们的例子与现有工作形成对比,显示使用强效法方法确定系统值不到100美元和数千美元的系统是可行的。我们证明,在某些标准的常规假设下,在普通的最小方位设置中,这个方案与 $mathcal{O}(N ⁇ -1/2}) 相匹配,我们在两个空间层面以数字方式展示了多个系统的趋同式聚合率率率。我们的例子包括:从同基因化理论中找出一个来自100美元和以几千美元为单位的系统点的系统,使用强度的系统,使用强度的系统用于以强度的系统Smolvial-stillal-chalimalimalimal-stalimalis Stalimalal 的模型,这是向学习的理论,一个步骤向学习的模型的模型,一个步骤,一个步骤,向学习了I-cheal-stal-chillevalis-stalis-salvialvialis-sal-salvialvialvialvialvialmentalmental