We consider the problem of understanding the coordinated movements of biological or artificial swarms. In this regard, we propose a learning scheme to estimate the coordination laws of the interacting agents from observations of the swarm's density over time. We describe the dynamics of the swarm based on pairwise interactions according to a Cucker-Smale flocking model, and express the swarm's density evolution as the solution to a system of mean-field hydrodynamic equations. We propose a new family of parametric functions to model the pairwise interactions, which allows for the mean-field macroscopic system of integro-differential equations to be efficiently solved as an augmented system of PDEs. Finally, we incorporate the augmented system in an iterative optimization scheme to learn the dynamics of the interacting agents from observations of the swarm's density evolution over time. The results of this work can offer an alternative approach to study how animal flocks coordinate, create new control schemes for large networked systems, and serve as a central part of defense mechanisms against adversarial drone attacks.
翻译:我们考虑了了解生物或人工群群群协调移动的问题。 在这方面,我们提出一个学习计划,从对群密度的观测中估算互动剂的协调法则。 我们描述群群群的动态,根据一个Cucker-Smalle群群集模型,基于对称互动,表达群群群的密度演变,以此作为中场流体动力方程系统的解决办法。 我们提议建立一个新型的参数函数组,以模拟对称互动,从而能够有效地通过扩大的PDE系统来解决内地的内地、内地、异形等式的宏观系统。 最后,我们将扩大的系统纳入一个迭代优化计划,以便从对群群密度变化的观察中了解互动剂的动态。 这项工作的结果可以提供另一种方法,研究动物群群如何协调,为大型网络系统建立新的控制计划,并成为防御对敌性无人机攻击的防御机制的核心部分。