This paper presents a general high-order kernel regularization technique applicable to all four integral operators of Calder\'on calculus associated with linear elliptic PDEs in two and three spatial dimensions. Like previous density interpolation methods, the proposed technique relies on interpolating the density function around the kernel singularity in terms of solutions of the underlying homogeneous PDE, so as to recast singular and nearly singular integrals in terms of bounded (or more regular) integrands. We present here a simple interpolation strategy which, unlike previous approaches, does not entail explicit computation of high-order derivatives of the density function along the surface. Furthermore, the proposed approach is kernel- and dimension-independent in the sense that the sought density interpolant is constructed as a linear combination of point-source fields, given by the same {Green's function} used in the integral equation formulation, thus making the procedure applicable, in principle, to any PDE with known {Green's function}. For the sake of definiteness, we focus here on Nystr\"om methods for the (scalar) Laplace and Helmholtz equations and the (vector) elastostatic and time-harmonic elastodynamic equations. The method's accuracy, flexibility, efficiency, and compatibility with fast solvers are demonstrated by means of a variety of large-scale three-dimensional numerical examples.
翻译:本文展示了适用于卡尔德的四种整体操作者在两个和三个空间维度中与线性椭圆形 PDE 相关的直线椭圆形 PDE 的四种整体操作者的一般高阶内核规范化技术。 与以前的密度内插方法一样, 拟议的技术依赖在以下均匀 PDE 的解决方案中将内核单点的密度函数内插, 以便从约束性( 或更常规性) 成形的角度重塑单点和近乎单一的内分集。 我们在此提出了一个简单的内插战略, 与以往的方法不同, 并不要求明确计算表层内密度函数的高度衍生物。 此外, 拟议的方法与先前的密度内核和尺寸不同, 即所寻求的内核内核内核内核是作为点源字段的线性组合, 以同一{ 绿色的函数} 为基础, 在整体方程式中, 使程序在原则上适用于任何已知的{ 绿色性功能的 PDE 。 为了确定性, 我们在这里集中关注 Nystr \\ “om” om explical explical explace- calalalalalalal 和 livacal- cal- livacal- cal- 和 Hal- pal- caltical- pal- sal- pal- ligal- sal- salpal- 和 Hal- pal- sal- sal- lipal- sal- sal- pal- sal- salvadalpal- sal- pal- sal- 和 和 ligal- pal- sal- pal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- pal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- slal- sal- sal- sal- sal- sal-