We propose a reformulation for the integral equations approach of Jain, Breunung \& Haller [Nonlinear Dyn. 97, 313--341 (2019)] to steady-state response computation for periodically forced nonlinear mechanical systems. This reformulation results in additional speed-up and better convergence. We show that the solutions of the reformulated equations are in one-to-one correspondence with those of the original integral equations and derive conditions under which a collocation type approximation converges to the exact solution in the reformulated setting. Furthermore, we observe that model reduction using a selected set of vibration modes of the linearized system substantially enhances the computational performance. Finally, we discuss an open-source implementation of this approach and demonstrate the gains in computational performance using three examples that also include nonlinear finite-element models.
翻译:我们建议重新拟订Jain、Breunung ⁇ Haller[Nonlinear Dyn. 97, 313-341 (2019)] 的整体方程式方法,以对定期强制的非线性机械系统进行稳定状态反应计算。这种重新拟订的结果是加快速度和更好地趋同。我们表明,重新拟订的方程式的解决方案与原始整体方程式的解决方案是一对一对应的,并得出合用类型近似在重新拟订的设置中与确切的解决方案相融合的条件。此外,我们注意到,使用线性系统选定的一套振动模式来减少模型极大地增强了计算性能。最后,我们讨论这一方法的开放源实施,并用三个例子(也包括非线性定点模型)来显示计算性绩效的收益。