In this paper, we propose a new scheme for the integration of the periodic nonlinear Schr\"{o}dinger equation and rigorously prove convergence rates at low regularity. The new integrator has decisive advantages over standard schemes at low regularity. In particular, it is able to handle initial data in $H^s$ for $0 < s\le 1$. The key feature of the integrator is its ability to distinguish between low and medium frequencies in the solution and to treat them differently in the discretization. This new approach requires a well-balanced filtering procedure which is carried out in Fourier space. The convergence analysis of the proposed scheme is based on discrete (in time) Bourgain space estimates which we introduce in this paper. A numerical experiment illustrates the superiority of the new integrator over standard schemes for rough initial data.


翻译:在本文中,我们提出一个新的计划,将周期性非线性施尔茨丁格方程式整合,并严格证明常规性低的趋同率。新的集成器相对于常规性低的标准办法具有决定性的优势。特别是,它能够处理以0美元计算的零美元 < s\le 1美元的初步数据。集成器的主要特征是它能够区分解决方案中的低频率和中频率,并在离散性方面区别对待这些频率。这种新方法要求在Fourier空间实施一种平衡的过滤程序。对拟议办法的趋同分析基于我们在本文件中介绍的离散(在时间上)Bourgain空间估计数。一个数字实验显示了新集成器相对于粗略初始数据标准办法的优越性。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员