Target following in dynamic pedestrian environments is an important task for mobile robots. However, it is challenging to keep tracking the target while avoiding collisions in crowded environments, especially with only one robot. In this paper, we propose a multi-agent method for an arbitrary number of robots to follow the target in a socially-aware manner using only 2D laser scans. The multi-agent following problem is tackled by utilizing the complementary strengths of both reinforcement learning and potential field, in which the reinforcement learning part handles local interactions while navigating to the goals assigned by the potential field. Specifically, with the help of laser scans in obstacle map representation, the learning-based policy can help the robots avoid collisions with both static obstacles and dynamic obstacles like pedestrians in advance, namely socially aware. While the formation control and goal assignment for each robot is obtained from a target-centered potential field constructed using aggregated state information from all the following robots. Experiments are conducted in multiple settings, including random obstacle distributions and different numbers of robots. Results show that our method works successfully in unseen dynamic environments. The robots can follow the target in a socially compliant manner with only 2D laser scans.
翻译:动态行人环境中的目标跟踪是移动机器人的一项重要任务。 然而, 继续跟踪目标, 避免在拥挤环境中发生碰撞, 特别是仅与一个机器人发生碰撞, 是很困难的。 在本文中, 我们建议了一种多试剂方法, 任意数目的机器人只使用 2D 激光扫描, 以社会觉悟的方式跟踪目标。 多试剂问题通过利用增强学习和潜在场的互补优势来解决, 强化学习部分在导航到潜在场指定的目标时处理本地互动。 具体地说, 在障碍地图显示的激光扫描的帮助下, 基于学习的政策可以帮助机器人避免与静止障碍和动态障碍发生碰撞, 如行人提前( 即社会觉悟) 。 虽然每个机器人的形成控制和目标定位来自一个以目标为中心的潜在领域, 利用随后所有机器人的汇总状态信息来构建。 实验在多个环境中进行, 包括随机障碍分布和不同数目的机器人。 结果显示, 我们的方法在看不见的动态环境中成功运行。 机器人可以以社会合规的方式跟踪目标, 只有 2D 激光扫描。