We develop an eigenspace estimation algorithm for distributed environments with arbitrary node failures, where a subset of computing nodes can return structurally valid but otherwise arbitrarily chosen responses. Notably, this setting encompasses several important scenarios that arise in distributed computing and data-collection environments such as silent/soft errors, outliers or corrupted data at certain nodes, and adversarial responses. Our estimator builds upon and matches the performance of a recently proposed non-robust estimator up to an additive $\tilde{O}(\sigma \sqrt{\alpha})$ error, where $\sigma^2$ is the variance of the existing estimator and $\alpha$ is the fraction of corrupted nodes.
翻译:我们为任意节点失灵的分布式环境开发了一种天平估计算法,其中一组计算节点可以返回结构上有效但以其他方式任意选择的响应。 值得注意的是,这种设定包含分布式计算和数据收集环境中出现的一些重要情景,如静默/软错误、某些节点的异常数据或腐败数据,以及对抗性响应。 我们的估测器以最近提议的非紫外线估测器的性能为基础,并与之相匹配,直至一个添加值$\tilde{O}(sigma\sqrt halpha})$($sigma_2$)错误,即现有估测算器的偏差为$($),腐蚀节点的分数为$($/alpha$)。