This paper introduces and proves asymptotic normality for a new semi-parametric estimator of continuous treatment effects in panel data. Specifically, we estimate an average derivative of the regression function. Our estimator uses the panel structure of data to account for unobservable time-invariant heterogeneity and machine learning methods to flexibly estimate functions of high-dimensional inputs. We construct our estimator using tools from double de-biased machine learning (DML) literature. We show the performance of our method in Monte Carlo simulations and also apply our estimator to real-world data and measure the impact of extreme heat in United States (U.S.) agriculture. We use the estimator on a county-level dataset of corn yields and weather variation, measuring the elasticity of yield with respect to a marginal increase in extreme heat exposure. In our preferred specification, the difference between the estimates from OLS and our method is statistically significant and economically significant. We find a significantly higher degree of impact, corresponding to an additional $1.18 billion in annual damages by the year 2050 under median climate scenarios. We find little evidence that this elasticity is changing over time.
翻译:本文介绍并证明,在小组数据中,连续处理效应的新的半参数估计值是正常的。具体地说,我们估计回归函数的平均衍生物。我们的估计者使用数据小组结构来计算不可观测的时间变化性差异和机器学习方法,以灵活估计高维投入的功能。我们使用双向脱偏见机器学习(DML)文献工具来构建我们的估算器。我们在蒙特卡洛模拟中展示了我们的方法的性能,并将我们的估计器用于真实世界的数据,并测量美国(美国)农业中极端热的影响。我们使用一个关于玉米产量和气候变化的州级数据集的估测器,以测量产量相对于极端热暴露的边际增加的弹性。我们偏好地说明,来自OLS的估算值与我们的方法的估算值之间的差别具有统计意义和经济意义。我们发现,影响程度要高得多,相当于到2050年中位气候假设下每年超过11.8亿美元的损失。我们发现,在中位情况下,这一证据很少。