Deep convolutional neural networks have been demonstrated to be effective for SISR in recent years. On the one hand, residual connections and dense connections have been used widely to ease forward information and backward gradient flows to boost performance. However, current methods use residual connections and dense connections separately in most network layers in a sub-optimal way. On the other hand, although various networks and methods have been designed to improve computation efficiency, save parameters, or utilize training data of multiple scale factors for each other to boost performance, it either do super-resolution in HR space to have a high computation cost or can not share parameters between models of different scale factors to save parameters and inference time. To tackle these challenges, we propose an efficient single image super-resolution network using dual path connections with multiple scale learning named as EMSRDPN. By introducing dual path connections inspired by Dual Path Networks into EMSRDPN, it uses residual connections and dense connections in an integrated way in most network layers. Dual path connections have the benefits of both reusing common features of residual connections and exploring new features of dense connections to learn a good representation for SISR. To utilize the feature correlation of multiple scale factors, EMSRDPN shares all network units in LR space between different scale factors to learn shared features and only uses a separate reconstruction unit for each scale factor, which can utilize training data of multiple scale factors to help each other to boost performance, meanwhile which can save parameters and support shared inference for multiple scale factors to improve efficiency. Experiments show EMSRDPN achieves better performance and comparable or even better parameter and inference efficiency over SOTA methods.
翻译:近些年来,深层神经网络已证明对SISR而言是有效的。一方面,残余连接和密集连接被广泛用于便利远端信息和后向梯度流动以提升性能。然而,目前的方法在大多数网络层中以亚最佳的方式分别使用残余连接和密集连接。另一方面,虽然设计了各种网络和方法以提高计算效率、保存参数或使用多个规模因素的培训数据来提高业绩,但在人力资源空间中,要么使用超分辨率,要么使用高计算成本,要么无法在不同规模因素模型之间共享参数,以节省参数和推断时间。为了应对这些挑战,我们建议采用高效的单一图像超分辨率网络,使用双轨连接,以名为EMRDPN的多种规模学习。另一方面,虽然设计了各种网络网络和方法,以提高计算效率、节省参数的通用性能,或者为SIRRM的更密集连接探索新的特征,以便为SISR学习更好的代表性。为了应对这些挑战,我们建议使用双轨模式的单一图像超分辨率网络连接,同时使用不同规模规模的系统(EMSRPN)的特性,在不同的空间规模中,在不同的空间规模中,每个规模中,只能使用不同比例的数据比例中,在不同的比例中学习不同规模中,在不同的空间网络中学习不同规模中,而使用不同规模中,ERSPNA的特性中,所有的数据比例中,可以使用不同的比例中学习不同的比例中学习不同比例中学习不同比例数据。