Inspired by Aumann's agreement theorem, Scott Aaronson studied the amount of communication necessary for two Bayesian experts to approximately agree on the expectation of a random variable. Aaronson showed that, remarkably, the number of bits does not depend on the amount of information available to each expert. However, in general the agreed-upon estimate may be inaccurate: far from the estimate they would settle on if they were to share all of their information. We show that if the experts' signals are \emph{substitutes} -- meaning the experts' information has diminishing marginal returns -- then it is the case that if the experts are close to agreement then they are close to the truth. We prove this result for a broad class of agreement and accuracy measures that includes squared distance and KL divergence. Additionally, we show that although these measures capture fundamentally different kinds of agreement, Aaronson's agreement result generalizes to them as well.


翻译:在Aumann协议理论的启发下,Scott Aaronson研究了两名巴伊西亚专家大致商定随机变量预期所需的通信量。Aaronson指出,明显的是,位数并不取决于每名专家可获得的信息量。然而,一般而言,商定的估计可能不准确:如果专家的信号是/emph{substities} -- -- 即专家的信息减少了边际回报 -- -- 那么,如果专家接近于同意,那么他们就会接近于真理。我们证明,这一结果产生了广泛的一致和准确性措施,其中包括平方距离和KL差异。此外,我们表明,虽然这些措施反映了截然不同的一致,但Aaronson的协议也对它们作了概括。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
40+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2022年1月5日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
9+阅读 · 2018年10月24日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员