Cooperative UAV networks are becoming increasingly popular in military and civilian applications. Alas, the typical ad-hoc routing protocols, which aim at finding the shortest path, lead to significant performance degradation because of the 3-dimension highly-dynamic nature of UAV networks and the uneven distribution of nodes across the network. This paper proposes OPAR, an optimized predictive and adaptive routing protocol, to face this challenging problem. We model the routing problem with linear programming (LP), where the goal is to maximize network performance, considering the path lifetime and path-length together. This model relies on a precise link lifetime prediction mechanism. We support the LP problem with a lightweight algorithm to find the optimized solution with a computation complexity of $O(|E|^2)$, where $|E|$ is the number of network links. We evaluate the OPAR performance and compare it with the well-known routing algorithms AODV, DSDV, and OLSR to cover a wide range of proactive and reactive protocols as well as distance vector and link-state techniques. We performed extensive simulations for different network densities and mobility patterns using the ns-3 simulator. Results show that OPAR prevents a high volume of routing traffic, increases the successful delivery by more than $30\%$, improves the throughput $25\%$ on average, and decreases the flow completion time by an average of $35\%$.


翻译:合作性UAV网络在军事和民用应用中越来越受欢迎。 可惜,典型的特设路由协议旨在寻找最短路径,由于UAV网络具有三维高度动态性质,而且网络间节点分布不均,导致性能显著退化。 本文提议OPAR, 优化预测性和适应性路由协议, 以应对这一具有挑战性的问题。 我们用线性编程(LP)来模拟路由问题, 目标是最大限度地提高网络性能, 同时考虑到路径寿命和路径长度。 这个模式依赖于精确的连线一生预测机制。 我们用轻量算法支持LP问题, 以找到最优化的解决方案, 计算复杂性为$( ⁇ E ⁇ 2), 网络链接数量为$ 。 我们评估OPAR的性能, 并将其与众所周知的路线算法AODV、 DSDV和OLSR(OLSR) 来模拟一系列的主动性和反应性协议, 以及远程矢量和连接技术。 我们用一个广泛的模拟了不同网络中位值, 递增量和流动模式, 以显示高流量 递增速度。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning Dynamic Routing for Semantic Segmentation
Arxiv
8+阅读 · 2020年3月23日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员