Tree tensor networks, or tree-based tensor formats, are prominent model classes for the approximation of high-dimensional functions in computational and data science. They correspond to sum-product neural networks with a sparse connectivity associated with a dimension tree and widths given by a tuple of tensor ranks. The approximation power of these models has been proved to be (near to) optimal for classical smoothness classes. However, in an empirical risk minimization framework with a limited number of observations, the dimension tree and ranks should be selected carefully to balance estimation and approximation errors. We propose and analyze a complexity-based model selection method for tree tensor networks in an empirical risk minimization framework and we analyze its performance over a wide range of smoothness classes. Given a family of model classes associated with different trees, ranks, tensor product feature spaces and sparsity patterns for sparse tensor networks, a model is selected (\`a la Barron, Birg\'e, Massart) by minimizing a penalized empirical risk, with a penalty depending on the complexity of the model class and derived from estimates of the metric entropy of tree tensor networks. This choice of penalty yields a risk bound for the selected predictor. In a least-squares setting, after deriving fast rates of convergence of the risk, we show that our strategy is (near to) minimax adaptive to a wide range of smoothness classes including Sobolev or Besov spaces (with isotropic, anisotropic or mixed dominating smoothness) and analytic functions. We discuss the role of sparsity of the tensor network for obtaining optimal performance in several regimes. In practice, the amplitude of the penalty is calibrated with a slope heuristics method. Numerical experiments in a least-squares regression setting illustrate the performance of the strategy.


翻译:树伸缩网络, 或基于树的沙拉格式, 是计算和数据科学中高维功能近距离近似高维值的显著模型级。 它们对应于与维度树和宽度相联的松软树和宽度相联的合成产品神经网络。 这些模型的近似能量已被证明( 接近) 适合古典光滑类。 但是, 在一个实验风险最小化框架内, 观察数量有限, 尺寸树和级应该谨慎选择, 以平衡估计和近似错误。 我们提议和分析基于复杂性的树伸缩网络模型选择方法, 在一个实验风险最小化框架中, 我们分析树伸缩网络的复杂模型选择方法, 分析其在一系列的光滑滑动类中的性能。 鉴于这些模型类别与不同的树、 级、 阵列、 变色产产品空间和松动模式模式模式, 选择一个模型( la Barron, Birgle, Massart) 尽量减少经验风险, 取决于模型等级的复杂度, 以及从树伸缩网络最小化模型的估算中得出的结果 。 这种刑罚的变变变变, 系统在快速变变变变变变变的策略中产生一种预测中, 显示的变变变变变变的变的变的变变变的变的变变的变的变的变的变式策略中, 变的变的变的变的变的变的变的变的变的变的变的变的变的变式策略, 。

0
下载
关闭预览

相关内容

经验风险是对训练集中的所有样本点损失函数的平均最小化。经验风险越小说明模型f(X)对训练集的拟合程度越好。
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年12月21日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员