We consider a model of robust learning in an adversarial environment. The learner gets uncorrupted training data with access to possible corruptions that may be affected by the adversary during testing. The learner's goal is to build a robust classifier, which will be tested on future adversarial examples. The adversary is limited to $k$ possible corruptions for each input. We model the learner-adversary interaction as a zero-sum game. This model is closely related to the adversarial examples model of Schmidt et al. (2018); Madry et al. (2017). Our main results consist of generalization bounds for the binary and multiclass classification, as well as the real-valued case (regression). For the binary classification setting, we both tighten the generalization bound of Feige et al. (2015), and are also able to handle infinite hypothesis classes. The sample complexity is improved from $O(\frac{1}{\epsilon^4}\log(\frac{|H|}{\delta}))$ to $O\big(\frac{1}{\epsilon^2}(kVC(H)\log^{\frac{3}{2}+\alpha}(kVC(H))+\log(\frac{1}{\delta})\big)$ for any $\alpha > 0$. Additionally, we extend the algorithm and generalization bound from the binary to the multiclass and real-valued cases. Along the way, we obtain results on fat-shattering dimension and Rademacher complexity of $k$-fold maxima over function classes; these may be of independent interest. For binary classification, the algorithm of Feige et al. (2015) uses a regret minimization algorithm and an ERM oracle as a black box; we adapt it for the multiclass and regression settings. The algorithm provides us with near-optimal policies for the players on a given training sample.


翻译:我们考虑在敌对环境中进行强力学习的模式。 学习者会得到不间断的培训数据, 从而获得可能受对手测试期间受到对手影响的潜在腐败。 学习者的目标是建立一个强大的分类器, 在未来的敌对实例中测试。 对手仅限于每个输入可能存在的k美元腐败。 我们将学习者- 反向互动模式建为零和游戏。 这个模式与Schmid et al. (2018); Madry et al. (2017) 的对抗性复杂度范例模式密切相关。 我们的主要结果包括二进制和多级分类的通用约束; 以及真实价值的分类( Regression)。 对于二进制的分类设置, 我们同时收紧Fege 和 al. (2015), 还可以处理无限的假设类。 样本的复杂性从 $O (\ ferc{ 1\\\ epsalxlickral) 和 rickal- blickal- blickral (\) a. freal2\\\\\\\\\\\\\\\\\\\ hlex a tral deal deal deal deal deal a.

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员