In 2013, Cuturi [Cut13] introduced the Sinkhorn algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the Sinkhorn algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter $\eta$ periodically. We prove that such modified version of Sinkhorn has an exponential convergence rate as iteration complexity depending on $\log(1/\varepsilon)$ instead of $\varepsilon^{-O(1)}$ from previous analyses [Cut13][ANWR17] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on $1/\varepsilon$ as well.
翻译:基于正则化调度的Sinkhorn迭代的指数收敛
Translated abstract:
在2013年,Cuturi(Cut13)提出了Sinkhorn算法作为计算规则化最优输运问题解决方法的矩阵缩放。本文旨在了解在正则化调度下的Sinkhorn算法,以获得更高精度解的更好收敛速度,并因此用一种机制修改它,该机制会在一定周期内自适应地将正则化参数$\eta$翻倍。我们证明了在具有整数供求的最佳输运问题中,Sinkhorn的这种修改版本具有指数收敛速率,其迭代复杂度取决于$\log(1/\varepsilon)$,而不是先前分析[Cut13][ANWR17]中的$\varepsilon^{-O(1)}$。此外,通过成本和容量缩放程序,一般的最佳输运问题也可以用对$1/\varepsilon$的对数依赖性来解决。