Minkowski proved that any $n$-dimensional lattice of unit determinant has a nonzero vector of Euclidean norm at most $\sqrt{n}$; in fact, there are $2^{\Omega(n)}$ such lattice vectors. Lattices whose minimum distances come close to Minkowski's bound provide excellent sphere packings and error-correcting codes in $\mathbb{R}^{n}$. The focus of this work is a certain family of efficiently constructible $n$-dimensional lattices due to Barnes and Sloane, whose minimum distances are within an $O(\sqrt{\log n})$ factor of Minkowski's bound. Our primary contribution is a polynomial-time algorithm that list decodes this family to distances approaching $1/\sqrt{2}$ of the minimum distance. The main technique is to decode Reed-Solomon codes under error measured in the Euclidean norm, using the Koetter-Vardy "soft decision" variant of the Guruswami-Sudan list-decoding algorithm.
翻译:Minkowski 证明, 任何单位决定因素的维维值值值为 $\ sqrt{n} 美元; 事实上, 有 2 美元 Omega (n) 美元 。 最小距离接近 Minkowski 约束的拉特克提供了极佳的球体包装和错误校正代码 $\ mathbb{R ⁇ } 。 这项工作的重点是由巴恩斯 和 斯隆 组成的一个高效可构建的 $ 美元 的立方体, 其最小距离在 Minkowski 约束的 $( sqrt\ log n} ) 系数之内。 我们的主要贡献是一种多元时间算法, 将这个家族的距离从最小距离到 $/ sqrt{2} 的距离进行解码。 主要技术是使用 Korest- Vardy “ 软性决定” 库鲁斯瓦米- Sustain 列表算算法的变式, 在 Euclidean 规范中测量误测 Reed- Solomon 代码。