We introduce the problem of determining if the mode of the output distribution of a quantum circuit (given as a black-box) is larger than a given threshold, named HighDist, and a similar problem based on the absolute values of the amplitudes, named HighAmp. We design quantum algorithms for promised versions of these problems whose space complexities are logarithmic in the size of the domain of the distribution, but the query complexities are independent. Using these, we further design algorithms to estimate the largest probability and the largest amplitude among the output distribution of a quantum black-box. All of these allow us to improve the query complexity of a few recently studied problems, namely, $k$-distinctness and its gapped version, estimating the largest frequency in an array, estimating the min-entropy of a distribution, and the non-linearity of a Boolean function, in the $\tilde{O}(1)$-qubits scenario. The time-complexities of almost all of our algorithms have a small overhead over their query complexities making them efficiently implementable on currently available quantum backends.
翻译:我们提出了确定量子电路(以黑盒形式提供)的输出分布模式是否大于特定阈值的问题(以黑盒形式提供)和基于振幅绝对值的类似问题(以高磁盘命名),我们为这些问题的允诺版本设计量子算法,其空间复杂性在分布范围大小上是对数的,但问题的复杂性是独立的。利用这些算法,我们进一步设计算法,以估计量子黑盒输出分布中的最大概率和最大振幅。所有这些都使我们能够改进最近研究的一些问题的查询复杂性,即美元分辨度及其偏差版本,估计一个阵列中的最大频率,估计分布的微量子,以及在 $\ tilde{O}(1)- Qbits 假设中布林函数的非线性。我们几乎所有的算法在时间复杂性上都对质子黑盒的查询复杂性有一个小的间接费用,使其在目前可用的量子后端可以有效实施。