We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes. Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary. From this perspective, we propose \textbf{Boundary Squeeze} module: a novel and efficient module that squeezes the object boundary from both inner and outer directions which leads to precise mask representation. To generate such squeezed representation, we propose a new bidirectionally flow-based warping process and design specific loss signals to supervise the learning process. Boundary Squeeze Module can be easily applied to both instance and semantic segmentation tasks as a plug-and-play module by building on top of existing models. We show that our simple yet effective design can lead to high qualitative results on several different datasets and we also provide several different metrics on boundary to prove the effectiveness over previous work. Moreover, the proposed module is light-weighted and thus has potential for practical usage. Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting. Code and model will be available.
翻译:我们提出一个精细的、高品质的物体和场景图像分割新颖方法。 受到形态图像处理技术的放大和侵蚀的启发, 我们将像素级分割问题作为挤压对象边界处理。 从这个角度, 我们提议了 extextbf{Boundary Squeze} 模块: 一个从内向和外向挤压物体边界的新颖而高效的模块, 该模块可以从内向和外向挤压物体边界, 导致精确的掩码表示。 为了产生这种挤压代表, 我们提议了一个新的双向流扭曲过程, 并设计了监督学习过程的具体损失信号。 我们的方法可以很容易地将像形和语义分割任务作为插头和玩耍模块来应用。 我们显示, 我们简单而有效的设计可以在几个不同的数据集上带来高质的结果, 我们还提供了几个不同的边界测量标准, 以证明以往工作的有效性。 此外, 拟议的模块是轻量的, 因而有可能实际使用。 我们的方法在COCO、 城市阵列( ) 和 点( ) 快速的模型下, 和定出前方形( ) 和定出前方和定点( ) 的准确度( ) 定时和定时, 在前方和定时, 在前方和定序和定序中, 定中, 在前方和定中, 在前方和定序中, 定序中, 定中, 和定的精确度中, 定时将产生大量 。