The robustness of machine learning algorithms to distributions shift is primarily discussed in the context of supervised learning (SL). As such, there is a lack of insight on the robustness of the representations learned from unsupervised methods, such as self-supervised learning (SSL) and auto-encoder based algorithms (AE), to distribution shift. We posit that the input-driven objectives of unsupervised algorithms lead to representations that are more robust to distribution shift than the target-driven objective of SL. We verify this by extensively evaluating the performance of SSL and AE on both synthetic and realistic distribution shift datasets. Following observations that the linear layer used for classification itself can be susceptible to spurious correlations, we evaluate the representations using a linear head trained on a small amount of out-of-distribution (OOD) data, to isolate the robustness of the learned representations from that of the linear head. We also develop "controllable" versions of existing realistic domain generalisation datasets with adjustable degrees of distribution shifts. This allows us to study the robustness of different learning algorithms under versatile yet realistic distribution shift conditions. Our experiments show that representations learned from unsupervised learning algorithms generalise better than SL under a wide variety of extreme as well as realistic distribution shifts.


翻译:机器学习算法对于分销转换的稳健性主要在监督学习(SL)的背景下讨论。因此,对于从自我监督学习(SSL)和基于自动编码算法(AE)等未经监督的方法到分销转换的表达方式的稳健性缺乏洞察力。我们认为,未经监督的算法的输入驱动目标导致比SL的目标驱动的表达方式更稳健地进行分销转移。我们通过广泛评价SSL和AE在合成和现实分销转换数据集方面的性能来核实这一点。在发现用于分类的线性层本身可能容易产生虚假的相关性之后,我们利用受过少量分配外分配数据培训的线性头来评估这些表述方式。我们认为,未经监督的运算法的稳健性与线性头的数据分开。我们还开发了现有现实的域通用数据集的“可控性”版本,可调整的分布变化程度。这使我们得以研究在灵活但现实的分布变化条件下的不同学习算法的稳健性。我们进行了实验,在现实的分布变化中学习了比现实的高度变化的细化分析。

1
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
41+阅读 · 2020年12月18日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员