In this work, we study a global quadrature scheme for analytic functions on compact intervals based on function values on quasi-uniform grids of quadrature nodes. In practice it is not always possible to sample functions at optimal nodes with a low-order Lebesgue constant. Therefore, we go beyond classical interpolatory quadrature by lowering the degree of the polynomial approximant and by applying auxiliary mapping functions that map the original quadrature nodes to more suitable fake nodes. More precisely, we investigate the combination of the Kosloff Tal-Ezer map and Least-squares approximation (KTL) for numerical quadrature: a careful selection of the mapping parameter ensures a high accuracy of the approximation and, at the same time, an asymptotically optimal ratio between the degree of the polynomial and the spacing of the grid. We will investigate the properties of this KTL quadrature and focus on the symmetry of the quadrature weights, the limit relations for the mapping parameter, as well as the computation of the quadrature weights in the standard monomial and in the Chebyshev bases with help of a cosine transform. Numerical tests on equispaced nodes show that some static choices of the map's parameter improve the results of the composite trapezoidal rule, while a dynamic approach achieves larger stability and faster convergence, even when the sampling nodes are perturbed. From a computational point of view the proposed method is practical and can be implemented in a simple and efficient way.
翻译:在这项工作中,我们研究一个基于准统一的象形节点网格功能值的压缩间隔分析函数的全球二次图。 实际上,我们并不总是能够以低级 Lebesgue 常数的最佳节点对功能进行取样。 因此, 我们超越传统的跨度二次图, 降低多元相向度和电网间距之间的比例, 并应用辅助绘图功能, 将最初的二次节点映射到更合适的假节点上。 更准确地说, 我们调查了Kosloff Tal- Ezer 地图和最小方形网点对数字二次网点的比较值的结合: 仔细选择绘图参数可以确保高度的近点, 同时, 我们超越了传统的跨度二次线性二次线的二次线性二次线, 我们将调查KTL 二次网结结点的特性, 并关注二次曲线的对称、 映射参数的极限关系, 以及从简单的平面的更近点点点, 以及从简单的平面的渐变曲线的计算方法, 将显示一个更快速的平面的平面的平面结构的变变变的曲线结果, 和结构的测算结果的测算结果的计算结果的测算, 将比值进行更快速的测测算, 和测算的测测算, 的测测算的测算为稳定的基底基底基底基底的测算。