The singular source terms in sub-diffusion equations may lead to the unboundedness of the solutions, which will bring a severe reduction of convergence order of the existing numerical schemes. In this work, we propose two time-stepping schemes for solving sub-diffusion equations with a class of source terms mildly singular in time. One discretization is based on the Gr{\"u}nwald-Letnikov and backward Euler methods. First-order error estimate with respect to time is rigorously established under a weak regularity of both the source term and initial data. The other scheme derived from the second-order backward differentiation formula (BDF) is proved to possess an improved order of accuracy. Further, second-order accurate finite element and lumped mass finite element discretizations in space are applied and analyzed rigorously. Numerical investigations confirm our theoretical results.
翻译:分扩散方程式中的单一源术语可能导致解决方案的无约束性,这将严重减少现有数字办法的趋同顺序。 在这项工作中,我们提出了两个时间步骤计划,以解决分扩散方程式,用一种轻度单数的源术语来解决次扩散方程式,一个是依据Grrfs"u}u}nwald-Letnikov和落后的Euler方法分解的。在源术语和初始数据的常规性薄弱的情况下,严格确定了时间方面的一级误差估计。由二阶后向偏差公式(BDF)产生的另一个方案已证明具有更高的准确性。此外,二级精确的定数元素和空间中整列的有限元素分解功能得到严格的应用和分析。数字调查证实了我们的理论结果。