In this paper we analyse full discretizations of an initial boundary value problem (IBVP) related to reaction-diffusion equations. To avoid possible order reduction, the IBVP is first transformed into an IBVP with homogeneous boundary conditions (IBVPHBC) via a lifting of inhomogeneous Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. The IBVPHBC is discretized in time via the deferred correction method for the implicit midpoint rule and leads to a time-stepping scheme of order $2p+2$ of accuracy at the stage $p=0,1,2,\cdots $ of the correction. Each semi-discretized scheme results in a nonlinear elliptic equation for which the existence of a solution is proven using the Schaefer fixed point theorem. The elliptic equation corresponding to the stage $p$ of the correction is discretized by the Galerkin finite element method and gives a full discretization of the IBVPHBC. This fully discretized scheme is unconditionally stable with order $2p+2$ of accuracy in time. The order of accuracy in space is equal to the degree of the finite element used when the family of meshes considered is shape-regular while an increment of one order is proven for quasi-uniform family of meshes. Numerical tests with a bistable reaction-diffusion equation having a strong stiffness ratio and a linear reaction-diffusion equation addressing order reduction are performed and demonstrate the unconditional convergence of the method. The orders 2,4,6,8 and 10 of accuracy in time are achieved.
翻译:在本文中, 我们分析与反应扩散方程式有关的初始边界值问题( IBVP) 的完全离散性。 为避免可能减少订单, IBVP 最初通过取消不相容的 Dirichlet、 Neumann 或混合的Drichlet- Neumann 边界条件, 首次转换为具有相同边界条件的 IBVVPP 。 IBVPBC 通过延迟的中点规则校正方法, 及时分离, 并导致在调整阶段中, 精确的顺序为2p+2美元。 每个半分解方案首先转换为具有单一边界条件的 IBVVPP 。 每个半分解方案通过取消不相容异的分解性等离性方程式( IBVPBC ), 这个完全分解的顺序是无条件稳定的, 2p+2美元 cdocd 精确的平面平方程式, 在使用固定的直径直径直径直的直径直径直径直径直径直径6, 使用固定的直径直径直径直径直径直径直径直径直径直的直的直度测试我, 。 这个直径直直直的方方方方方方方程式, 直至直至直至直至直至直直至直直直直直直至直至直至直直直直至直直直直直直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直至直