We revisit the classic Pandora's Box (PB) problem under correlated distributions on the box values. Recent work of arXiv:1911.01632 obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover ($\mathcal{MSSC}_f$) problem. For distributions of support $m$, UDT admits a $\log m$ approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time (arXiv:1906.11385). Our main result implies that the same properties hold for PB and $\mathcal{MSSC}_f$. We also study the case where the distribution over values is given more succinctly as a mixture of $m$ product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time $n^{ \tilde O( m^2/\varepsilon^2 ) }$ when the mixture components on every box are either identical or separated in TV distance by $\varepsilon$.
翻译:我们重新审视了典型的潘多拉框( PPB) 问题。 最近 Arxiv 的工作: 19111.01632 获得了一个固定顺序访问框的问题限制政策类别的固定值的固定值 。 在这项工作中, 我们研究了最佳政策相近性的复杂性, 最佳政策可能根据迄今为止所看到的价值, 适应性地选择下一个访问的框。 我们的主要结果将PB 与经过仔细研究的统一决定树( UDT) 问题近似性- 等值, 从随机优化到 Min- Sum Set Cover (mathcal{MSCL2\\\ f$) 的变异性 。 对于支持 $% 的分布, UDTF 承认美元近似值, 虽然在聚度时间的恒定值中, 恒定系数的近似值可以在亚化时间( arXiv: 1906.11385) 。 我们的主要结果意味着 PB 和 $\ mathcalal= mal$。 我们的离差值的值是每个正alalalal 美元 的值, 当我们更精确的 mal dealalalalal 的计算值在每一年的每个正值上, 我们的递增的折值的折值, 。