We establish several results combining discrete Morse theory and microlocal sheaf theory in the setting of finite posets and simplicial complexes. Our primary tool is a computationally tractable description of the bounded derived category of sheaves on a poset with the Alexandrov topology. We prove that each bounded complex of sheaves on a finite poset admits a unique (up to isomorphism of complexes) minimal injective resolution, and we provide algorithms for computing minimal injective resolutions, as well as several useful functors between derived categories of sheaves. For the constant sheaf on a simplicial complex, we give asymptotically tight bounds on the complexity of computing the minimal injective resolution with this algorithm. Our main result is a novel definition of the discrete microsupport of a bounded complex of sheaves on a finite poset. We detail several foundational properties of the discrete microsupport, as well as a microlocal generalization of the discrete homological Morse theorem and Morse inequalities.


翻译:我们在设定有限表面和简易复合物时,将离散的摩斯理论和微本地沙耶夫理论结合起来。 我们的主要工具是在与亚历山德罗夫地形学的摆布上,用可计算的方式描述捆绑的产卵类别。 我们证明,每个捆绑的堆积群在有限表面上,都承认一种独特的(至复杂面的不形态化)微分分解; 我们提供计算最低微分解的算法, 以及若干衍生的沙叶类别之间有用的真菌。 对于固定的堆积层, 我们给计算与这种算法的最小预测分辨率的复杂性以无差别的近似界限。 我们的主要结果是, 一种新颖的定义, 即离散的堆积体复合体的积层的离散微支持。 我们详细介绍了离散微分微分解支持的几种基本特性, 以及离子同质摩尔姆和摩尔斯不平等的微局部化。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月3日
Arxiv
0+阅读 · 2022年11月1日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员