We establish several results combining discrete Morse theory and microlocal sheaf theory in the setting of finite posets and simplicial complexes. Our primary tool is a computationally tractable description of the bounded derived category of sheaves on a poset with the Alexandrov topology. We prove that each bounded complex of sheaves on a finite poset admits a unique (up to isomorphism of complexes) minimal injective resolution, and we provide algorithms for computing minimal injective resolutions, as well as several useful functors between derived categories of sheaves. For the constant sheaf on a simplicial complex, we give asymptotically tight bounds on the complexity of computing the minimal injective resolution with this algorithm. Our main result is a novel definition of the discrete microsupport of a bounded complex of sheaves on a finite poset. We detail several foundational properties of the discrete microsupport, as well as a microlocal generalization of the discrete homological Morse theorem and Morse inequalities.
翻译:我们在设定有限表面和简易复合物时,将离散的摩斯理论和微本地沙耶夫理论结合起来。 我们的主要工具是在与亚历山德罗夫地形学的摆布上,用可计算的方式描述捆绑的产卵类别。 我们证明,每个捆绑的堆积群在有限表面上,都承认一种独特的(至复杂面的不形态化)微分分解; 我们提供计算最低微分解的算法, 以及若干衍生的沙叶类别之间有用的真菌。 对于固定的堆积层, 我们给计算与这种算法的最小预测分辨率的复杂性以无差别的近似界限。 我们的主要结果是, 一种新颖的定义, 即离散的堆积体复合体的积层的离散微支持。 我们详细介绍了离散微分微分解支持的几种基本特性, 以及离子同质摩尔姆和摩尔斯不平等的微局部化。