Adding fiducial markers to a scene is a well-known strategy for making visual localization algorithms more robust. Traditionally, these marker locations are selected by humans who are familiar with visual localization techniques. This paper explores the problem of automatic marker placement within a scene. Specifically, given a predetermined set of markers and a scene model, we compute optimized marker positions within the scene that can improve accuracy in visual localization. Our main contribution is a novel framework for modeling camera localizability that incorporates both natural scene features and artificial fiducial markers added to the scene. We present optimized marker placement (OMP), a greedy algorithm that is based on the camera localizability framework. We have also designed a simulation framework for testing marker placement algorithms on 3D models and images generated from synthetic scenes. We have evaluated OMP within this testbed and demonstrate an improvement in the localization rate by up to 20 percent on three different scenes.
翻译:在现场添加纤维标记是一个众所周知的战略,可以使视觉本地化算法更加稳健。 传统上, 这些标记位置是由熟悉视觉本地化技术的人选择的。 本文探讨在现场设置自动标记的问题。 具体地说, 根据一套预定的标记和场景模型, 我们计算出场景内最优化标记位置, 以提高视觉本地化的准确性。 我们的主要贡献是制作相机本地化模型的新框架, 其中包括自然场特征和添加到现场的人工纤维标记。 我们展示了一种最优化的标记位置定位( OMP), 这是一种基于相机本地化框架的贪婪算法。 我们还设计了一个模拟框架, 用于测试3D模型和合成场景产生的图像的标记定位算法。 我们在这个测试台内对 OMP 进行了评估, 并在三个不同场景上展示了高达20%的本地化率。