In this paper, for solving large-scale nonlinear equations we propose a nonlinear sampling Kaczmarz-Motzkin (NSKM) method. Based on the local tangential cone condition and the Jensen's inequality, we prove convergence of our method with two different assumptions. Then, for solving nonlinear equations with the convex constraints we present two variants of the NSKM method: the projected sampling Kaczmarz-Motzkin (PSKM) method and the accelerated projected sampling Kaczmarz-Motzkin (APSKM) method. With the use of the nonexpansive property of the projection and the convergence of the NSKM method, the convergence analysis is obtained. Numerical results show that the NSKM method with the sample of the suitable size outperforms the nonlinear randomized Kaczmarz (NRK) method in terms of calculation times. The APSKM and PSKM methods are practical and promising for the constrained nonlinear problem.
翻译:在本文中,为解决大规模非线性方程,我们建议采用非线性取样Kaczmarz-Motzkin(NSKM)方法。根据当地近似锥形条件和Jensen的不平等性,我们证明我们的方法与两种不同的假设是趋同的。然后,为解决非线性方程和锥形限制,我们提出了NSKM方法的两个变式:预测的Kaczmarz-Motzkin(PSKM)采样方法和加速预测的Kaczmarz-Mitzkin(APSKM)采样方法。利用投影的非爆炸性属性和NSKM方法的趋同,我们取得了趋同分析。数字结果显示,NSKM方法与适当尺寸的样本在计算时间上超越了非线性随机卡兹马尔兹(NRK)方法。APSKM和PSKM方法对于受限制的非线性问题是实用和有希望的。