Divide-and-conquer dividing by a half recurrences, of the form $x_n =a\cdot x_{\left\lceil{n}/{2}\right\rceil}+a\cdot x_{\left\lfloor{n}/{2}\right\rfloor}+p(n)$, $n\geq 2$, appear in many areas of applied mathematics, from the analysis of algorithms to the optimization of phylogenetic balance indices. The Master Theorems that solve these equations do not provide the solution's explicit expression, only its big-$\Theta$ order of growth. In this paper we give an explicit expression (in terms of the binary decomposition of $n$) for the solution $x_n$ of a recurrence of this form, with given initial condition $x_1$, when the independent term $p(n)$ is a polynomial in $\lceil{n}/{2}\rceil$ and $\lfloor{n}/{2}\rfloor$.
翻译:在应用数学的许多领域,从分析算法到优化血源平衡指数,出现以半重现的 $x_n = a\cdot x ⁇ left\lceil{n}/ {2\right\rcele}a\cdot x ⁇ left\lpropl{n}/ {2\rdright\rp}p(n) $n\geq\rp(n) 美元,从分析算法到优化血源平衡指数。 解答这些方程式的主理论没有提供解决方案的清晰表达, 只有大/ $\ theta$ 增长顺序。 在本文中,我们明确表达( 以二进制分解 $为单位) $( 美元), 重现这种形式的解决方案, $xn $x_n $, 给定初始条件为$_1美元, 当独立术语 $p(n) 是以 $\cel{n}/{{{2\rcele$和$\l底价{{{{{{{{@r$。