Network Slices (NSs) are virtual networks operating over a shared physical infrastructure, each designed to meet specific application requirements while maintaining consistent Quality of Service (QoS). In Fifth Generation (5G) networks, User Equipment (UE) can connect to and seamlessly switch between multiple NSs to access diverse services. However, this flexibility, known as Inter-Slice Switching (ISS), introduces a potential vulnerability that can be exploited to launch Distributed Slice Mobility (DSM) attacks, a form of Distributed Denial of Service (DDoS) attack. To secure 5G networks and their NSs against DSM attacks, we present in this work, PUL-Inter-Slice Defender; an anomaly detection solution that leverages Positive Unlabeled Learning (PUL) and incorporates a combination of Long Short-Term Memory Autoencoders and K-Means clustering. PUL-Inter-Slice Defender leverages the Third Generation Partnership Project (3GPP) key performance indicators and performance measurement counters as features for its machine learning models to detect DSM attack variants while maintaining robustness in the presence of contaminated training data. When evaluated on data collected from our 5G testbed based on the open-source free5GC and UERANSIM, a UE/ Radio Access Network (RAN) simulator; PUL-Inter-Slice Defender achieved F1-scores exceeding 98.50% on training datasets with 10% to 40% attack contamination, consistently outperforming its counterpart Inter-Slice Defender and other PUL based solutions combining One-Class Support Vector Machine (OCSVM) with Random Forest and XGBoost.
翻译:暂无翻译