Dictionary Learning (DL) is one of the leading sparsity promoting techniques in the context of image classification, where the "dictionary" matrix D of images and the sparse matrix X are determined so as to represent a redundant image dataset. The resulting constrained optimization problem is nonconvex and non-smooth, providing several computational challenges for its solution. To preserve multidimensional data features, various tensor DL formulations have been introduced, adding to the problem complexity. We propose a new tensor formulation of the DL problem using a Tensor-Train decomposition of the multi-dimensional dictionary, together with a new alternating algorithm for its solution. The new method belongs to the Proximal Alternating Linearized Minimization (PALM) algorithmic family, with the inclusion of second order information to enhance efficiency. We discuss a rigorous convergence analysis, and report on the new method performance on the image classification of several benchmark datasets.
翻译:词典学习(DL)是图像分类方面的主要促进技术之一,在图像分类方面,确定图像的“字典”矩阵D和稀少的矩阵X是为了代表一个多余的图像数据集。由此产生的限制优化问题是非对流和非对流的,为解决方案提供了几种计算挑战。为了维护多维数据特征,引入了各种高压DL配方,增加了问题的复杂性。我们提议采用多维字典的Tensor-Train分解法,并采用新的交替算法,对DL问题进行新的分解。新的方法属于Proximal Alternational 线性最小化(PALM)算法系,包括二顺序信息以提高效率。我们讨论严格的趋同分析,并报告几个基准数据集图像分类的新方法表现。