In this paper, we focus on the design of binary constant-weight codes that admit low-complexity encoding and decoding algorithms, and that have size as a power of $2$. We construct a family of $(n=2^\ell, M=2^k, d=2)$ constant-weight codes ${\cal C}[\ell, r]$ parameterized by integers $\ell \geq 3$ and $1 \leq r \leq \lfloor \frac{\ell+3}{4} \rfloor$, by encoding information in the gaps between successive $1$'s of a vector. The code has weight $w = \ell$ and combinatorial dimension $k$ that scales quadratically with $\ell$. The encoding time is linear in the input size $k$, and the decoding time is poly-logarithmic in the input size $n$, discounting the linear time spent on parsing the input. Encoding and decoding algorithms of similar codes known in either information-theoretic or combinatorial literature require computation of large number of binomial coefficients. Our algorithms fully eliminate the need to evaluate binomial coefficients. While the code has a natural price to pay in $k$, it performs fairly well against the information-theoretic upper bound $\lfloor \log_2 {n \choose w} \rfloor$. When $\ell =3$, the code is optimal achieving the upper bound; when $\ell=4$, it is one bit away from the upper bound, and as $\ell$ grows it is order-optimal in the sense that the ratio of $k$ with its upper bound becomes a constant $\frac{11}{16}$ when $r=\lfloor \frac{\ell+3}{4} \rfloor$. With the same or even lower complexity, we derive new codes permitting a wider range of parameters by modifying ${\cal C}[\ell, r]$ in two different ways. The code derived using the first approach has the same blocklength $n=2^\ell$, but weight $w$ is allowed to vary from $\ell-1$ to $1$. In the second approach, the weight remains fixed as $w = \ell$, but the blocklength is reduced to $n=2^\ell - 2^r +1$. For certain selected values of parameters, these modified codes have an optimal $k$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月12日
Arxiv
0+阅读 · 2024年3月12日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员