项目名称: 无线传感器网络异常检测及异常数据重构关键技术研究
项目编号: No.61303074
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 原锦辉
作者单位: 中国人民解放军信息工程大学
项目金额: 23万元
中文摘要: 无线传感器网络的异常检测方案,通常采用节点协作的方式来完成异常数据判断,这就需要综合多个节点的意见。在现有异常检测方案中,这些意见仅为正常或不正常两种情况。但实际情况并非如此,邻居节点所给出的意见往往包括不确定性。如何将这种不确定性融入异常检测面临巨大挑战。移动节点的逐渐应用,为异常检测技术的改进提供了硬件基础。在异常检测中,如何充分发挥移动节点的潜能是一个值得研究的问题。此外,现有数据重构技术往往建立在时空相关性的基础上,而异常数据的偶然性和突发性使得这一前提并不总是成立。针对这些问题和研究现状,本项目将深入研究传感器网络异常检测和异常数据重构关键技术,拟采用基于主观逻辑的异常检测方法、静止和移动节点动态协作的异常检测技术、基于特征向量库的异常数据重构技术,解决传感器网络异常检测和异常数据重构所存在的一些问题,促进和推动传感器网络数据处理技术的发展。
中文关键词: 无线传感器网络;异常检测;异常数据重构;主观逻辑;路由构建
英文摘要: In wireless sensor networks, anomaly detection approaches ususally determine whether the data is normal with the cooperation of the nodes. To the end, it needs fusing the opinions of sensor nodes. However, previous work consider neighbors' opinions being just normal and anomalous, and do not consider the uncertainty of neighbors to the data of the node. How to fuse the uncertainty for anomaly detection is an important challenge. Beyond that, it provides the hardware foundation for the improvement of the anomaly detection technology with the gradual application of the mobile sensor nodes. How to play fully potential of the mobiles sensor nodes is a problem deserving of study in anomaly detection. In addition, the existing data reconstruction techniques are often based on the spatio-temporal correlation, and it is not always true because of the paroxysm of the abnormal data. To overcome the challenges, the research intends to study the key technologies of anomaly detection and anomalous data reconstruction. And it will propose some solutions which include the subjective logic based anomaly detection technique, dynamically collaboration between static and mobiles sensor nodes, and anomalous data reconstruction techniques on the feature vector library. Thus, it can promote and facilitate the development of anomaly d
英文关键词: Wireless Sensor Networks;Anomaly Detection;Anomalous Data Reconstruction;Subjective Logic;Routing Construction