We provide the first rigorous study of the finite-size error in the simplest and representative coupled cluster theory, namely the coupled cluster doubles (CCD) theory, for gapped periodic systems. Assuming that the CCD equations are solved using exact Hartree-Fock orbitals and orbital energies, we prove that the convergence rate of finite-size error scales as $\mathscr{O}(N_\mathbf{k}^{-\frac13})$, where $N_{\mathbf{k}}$ is the number of discretization point in the Brillouin zone and characterizes the system size. Our analysis shows that the dominant error lies in the coupled cluster amplitude calculation, and the convergence of the finite-size error in energy calculations can be boosted to $\mathscr{O}(N_\mathbf{k}^{-1})$ with accurate amplitudes. This also provides the first proof of the scaling of the finite-size error in the third order M{\o}ller-Plesset perturbation theory (MP3) for periodic systems.
翻译:我们对最简单、最有代表性的组群理论中的有限误差进行首次严格研究,即对间隔周期系统采用组合组合组合双倍(CCD)理论。假设CCD方程式是使用精确的Hartree-Fock轨道和轨道能量解决的,我们证明以$mathscr{O}(N ⁇ mathb{kb{k{{{k{{{\f{\f{k{k{k{k{k}}/frac13}$n ⁇ mathbf{k{k ⁇ }为布里略因区的离散点数,并具有系统大小的特点。我们的分析表明,主要误差存在于组合组合组合组合振幅计算中,能源计算中有限误差的趋同率可以用精确的安倍数来提升到$mathscr{O}(N ⁇ mathb{k{k}-1}$。这也首次证明定期系统中的M-Plesset perburbation理论(MP3)。