Analysing weighted networks requires modelling the binary and weighted properties simultaneously. We highlight three approaches for estimating the parameters responsible for them: econometric techniques treating topology as deterministic and statistical techniques either ensemble-averaging parameters or maximising an averaged likelihood over the topological randomness. In homogeneous models, equivalence holds; in heterogeneous network models, the local disorder breaks it, in a way reminiscent of the difference between `quenched' and `annealed' averages in the physics of disordered systems.


翻译:分析加权网络需要同时模拟二进制和加权属性。我们强调估算相关参数的三种方法。我们强调三种方法:计量经济学技术,将地形学作为确定性和统计技术处理,或将共同稳定参数作为确定性和统计技术处理,或将平均概率最大化于表层随机性。在同质模型中,等值持有;在多式网络模型中,地方性混乱打破了它,从而以某种方式与混乱系统物理学中“被消灭”和“被保护”平均数之间的差异相反。</s>

0
下载
关闭预览

相关内容

在计算机网络中,异构网络是一种连接计算机和其他设备的网络,其中操作系统和协议有显著差异。例如,将基于微软Windows和Linux的个人计算机与苹果Macintosh计算机连接起来的局域网(LANs)是异构的。异构网络也被用于使用不同接入技术的无线网络中。例如,通过无线局域网提供服务并在切换到蜂窝网络时能够维持服务的无线网络称为无线异构网络。
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
14+阅读 · 2021年5月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员