This paper proposes a novel multivariate definition of statistical dependence between two continuous random processes (r.p.) using a functional methodology inspired by Alfr\'ed R\'enyi. The argument of the logarithm of mutual information between pairs of samples of a r.p., named here the normalized cross density (NCD), defines a symmetric and self-adjoint positive definite function. We show that maximizing the alternating covariance estimation (ACE) recursion, applied to each of the joint probability density of input sample pairs, obeys all the properties of Renyi's maximal correlation. We propose the NCD's eigenspectrum as a novel multivariate measure of the statistical dependence between the input and output r.p. The multivariate statistical dependence can also be estimated directly from r.p. realizations. The proposed functional maximum correlation algorithm (FMCA) is applied to a machine learning architecture built from two neural networks that learn concurrently by approximating each others' outputs. We prove that the FMCA optimal solution is an equilibrium point that estimates the eigenspectrum of the cross density kernel. Preliminary results with synthetic data and medium size image datasets corroborate the theory. Four different strategies of applying the cross density kernel are proposed and thoroughly discussed to show the versatility and stability of the methodology, which transcends supervised learning. More specifically, when the two random processes are high-dimensional real-world images and a white uniform noise process, the algorithm learns a factorial code i.e., the occurrence of a code guarantees that a certain input in the training image set was present, which is quite important for feature learning.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员