Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.
翻译:深神经网络(DNN) 分类者已知很容易受到Trojan 或后门攻击, 其分类者被操纵, 从而错误地分类含有攻击者确定的Trojan触发器的任何输入。 后门会损害模型的完整性, 从而对基于 DNN 的分类环境构成严重威胁。 虽然图像域的分类者对此类攻击存在多重防御, 但我们在保护文本域内的分类者方面所做的努力有限。 我们为Trojan- Miner( T- Miner) 提供了Trojan- Miner( T- Miner) -- 用于Trojan攻击基于DNNN的文本分类者的防御框架。 T- Miner 使用一个序列到序列的序列到序列的序列( sqeq-2-seqeq) 。 后门将检测可疑的分类者到序列的序列( sqeqequal- squal) 。 Treaver smellalticreal sexal exmell exmal ex lax 5 we- crealtravelyal silal strual strual strational strations labers (Weal) laudate silty sildal sildaltractions) laveal laveals) laveal laveal supal labal ex supal exal labildal 。 。我们, 然后用“ 我们用“ 我们造型模型显示“ 我们造型模型显示“ 我们造模型”