There has been recently a growing interest in studying adversarial examples on natural language models in the black-box setting. These methods attack natural language classifiers by perturbing certain important words until the classifier label is changed. In order to find these important words, these methods rank all words by importance by querying the target model word by word for each input sentence, resulting in high query inefficiency. A new interesting approach was introduced that addresses this problem through interpretable learning to learn the word ranking instead of previous expensive search. The main advantage of using this approach is that it achieves comparable attack rates to the state-of-the-art methods, yet faster and with fewer queries, where fewer queries are desirable to avoid suspicion towards the attacking agent. Nonetheless, this approach sacrificed the useful information that could be leveraged from the target classifier for that sake of query efficiency. In this paper we study the effect of leveraging the target model outputs and data on both attack rates and average number of queries, and we show that both can be improved, with a limited overhead of additional queries.


翻译:最近人们越来越有兴趣在黑盒设置中研究自然语言模型的对抗性实例。这些方法在改变分类标签之前通过干扰某些重要字来攻击自然语言分类者。为了找到这些重要字,这些方法通过对每个输入句逐字询问目标模式字来将所有字按重要性排列,导致高度低效率问题。采用了一种新的有趣方法,通过可解释的学习来解决这一问题,学习词级,而不是以往昂贵的搜索。使用这种方法的主要好处是,它达到与最先进方法相似的攻击率,但速度更快,而且查询较少,因此,为了避免对攻击代理人的怀疑,查询较少。不过,为了查询效率,这种方法牺牲了目标分类员可以利用的有用信息。在这份文件中,我们研究了利用目标模型产出和数据对攻击率和平均查询次数的影响。我们表明,两者都可以改进,额外查询的间接间接影响有限。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2020年12月10日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员