Due to recent technological advances, large brain imaging data sets can now be collected. Such data are highly complex so extraction of meaningful information from them remains challenging. Thus, there is an urgent need for statistical procedures that are computationally scalable and can provide accurate estimates that capture the neuronal structures and their functionalities. We propose a fast method for estimating the fiber orientation distribution(FOD) based on diffusion MRI data. This method models the observed dMRI signal at any voxel as a convolved and noisy version of the underlying FOD, and utilizes the spherical harmonics basis for representing the FOD, where the spherical harmonic coefficients are adaptively and nonlinearly shrunk by using a James-Stein type estimator. To further improve the estimation accuracy by enhancing the localized peaks of the FOD, as a second step a super-resolution sharpening process is then applied. The resulting estimated FODs can be fed to a fiber tracking algorithm to reconstruct the white matter fiber tracts. We illustrate the overall methodology using both synthetic data and data from the Human Connectome Project.


翻译:由于最近的技术进步,现在可以收集大型的大脑成像数据集。这些数据非常复杂,从中提取有意义的信息仍然具有挑战性。因此,迫切需要统计程序,这些统计程序可以计算成可伸缩,能够提供准确的估计数,以捕捉神经结构及其功能。我们提出了一个快速方法,根据扩散的MRI数据来估计纤维定向分布(FOD)。这种方法模型将观测到的任何 voxel 的 dMRI 信号作为源FOD 的混杂和噪音版本,并使用球形口音基础来代表FOD, 即球形口音系数通过使用James-Stein 类型估计数据适应性和非线状缩缩缩。我们用合成数据和人类连接工程的数据来说明总体方法, 以便通过提高FOD的局部峰值来进一步提高估计的准确性。作为第二步的超级分辨率锐化过程。由此得出的估计FOD可被注入一个纤维跟踪算法,用于重建白质纤维纤维纤维纤维纤维纤维的纤维纤维条幅。我们用合成数据和人类连接项目的数据来说明总体方法。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月29日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员