Informative sampling designs can impact spatial prediction, or kriging, in two important ways. First, the sampling design can bias spatial covariance parameter estimation, which in turn can bias spatial kriging estimates. Second, even with unbiased estimates of the spatial covariance parameters, since the kriging variance is a function of the observation locations, these estimates will vary based on the sample and overestimate the population-based estimates. In this work, we develop a weighted composite likelihood approach to improve spatial covariance parameter estimation under informative sampling designs. Then, given these parameter estimates, we propose three approaches to quantify the effects of the sampling design on the variance estimates in spatial prediction. These results can be used to make informed decisions for population-based inference. We illustrate our approaches using a comprehensive simulation study. Then, we apply our methods to perform spatial prediction on nitrate concentration in wells located throughout central California.
翻译:首先,抽样设计可能偏向空间共变参数估计,从而偏向空间共变参数估计。 其次,即使对空间共变参数作出公正的估计,由于克里格差异是观测地点的函数,这些估计将根据抽样和高估以人口为基础的估计而变化。在这项工作中,我们开发了加权综合概率方法,以在信息丰富的抽样设计下改进空间共变参数估计。然后,根据这些参数估计,我们提出了三种方法,以量化抽样设计对空间预测差异估计的影响。这些结果可用于为基于人口的推断作出知情的决定。我们用综合模拟研究来说明我们的方法。然后,我们运用我们的方法对位于整个加利福尼亚中部的井中的硝酸盐浓度进行空间预测。