Hyperparameter optimization in machine learning (ML) deals with the problem of empirically learning an optimal algorithm configuration from data, usually formulated as a black-box optimization problem. In this work, we propose a zero-shot method to meta-learn symbolic default hyperparameter configurations that are expressed in terms of the properties of the dataset. This enables a much faster, but still data-dependent, configuration of the ML algorithm, compared to standard hyperparameter optimization approaches. In the past, symbolic and static default values have usually been obtained as hand-crafted heuristics. We propose an approach of learning such symbolic configurations as formulas of dataset properties from a large set of prior evaluations on multiple datasets by optimizing over a grammar of expressions using an evolutionary algorithm. We evaluate our method on surrogate empirical performance models as well as on real data across 6 ML algorithms on more than 100 datasets and demonstrate that our method indeed finds viable symbolic defaults.
翻译:机器学习中的超参数优化( ML) 解决了从数据中亲身学习最佳算法配置的问题, 通常设计成黑盒优化问题 。 在这项工作中, 我们建议对以数据集属性表示的元精度符号默认超参数配置采用零光法方法。 这样可以比标准超光度优化方法更快但仍然依赖数据的 ML 算法配置。 过去, 符号和静态默认值通常以手工制作的超光速方法获得 。 我们建议了一种方法, 学习像数据集属性的公式这样的符号配置, 通过利用进化算法优化多数据集的语法表达方式, 来从大量先前的数据集评价中学习。 我们评估了我们关于超光学性表现模型的方法以及超过100个数据集的6 ML 算法的真实数据, 并证明我们的方法确实发现可行的符号默认。