In recent years, the concept of automated machine learning has become very popular. Automated Machine Learning (AutoML) mainly refers to the automated methods for model selection and hyper-parameter optimization of various algorithms such as random forests, gradient boosting, neural networks, etc. In this paper, we introduce a new package i.e. DriveML for automated machine learning. DriveML helps in implementing some of the pillars of an automated machine learning pipeline such as automated data preparation, feature engineering, model building and model explanation by running the function instead of writing lengthy R codes. The DriveML package is available in CRAN. We compare the DriveML package with other relevant packages in CRAN/Github and find that DriveML performs the best across different parameters. We also provide an illustration by applying the DriveML package with default configuration on a real world dataset. Overall, the main benefits of DriveML are in development time savings, reduce developer's errors, optimal tuning of machine learning models and reproducibility.
翻译:近年来,自动机器学习的概念变得非常流行。自动机器学习(自动ML)主要是指各种算法,例如随机森林、梯度加速、神经网络等的模型选择和超参数优化的自动方法。在本文件中,我们引入了一个新的软件包,即自动机学习的驱动器ML。驱动器帮助实施自动机器学习管道的一些支柱,例如自动数据编制、地物工程、模型建设和模型解释,运行功能而不是撰写长长R码。驱动器ML软件包在CRAN/Github中可以找到。我们比较驱动器MLM软件包与CRAN/Github中其他相关软件包,发现驱动器MLML软件包在不同参数中表现得最佳。我们还通过在真实世界数据集中应用默认配置的驱动器MLML软件提供了例证。总体而言,驱动器的主要好处是开发时间节省,减少开发者的错误,优化机学习模型的调整和可复制性。