Tuning the hyperparameters in the differentially private stochastic gradient descent (DPSGD) is a fundamental challenge. Unlike the typical SGD, private datasets cannot be used many times for hyperparameter search in DPSGD; e.g., via a grid search. Therefore, there is an essential need for algorithms that, within a given search space, can find near-optimal hyperparameters for the best achievable privacy-utility tradeoffs efficiently. We formulate this problem into a general optimization framework for establishing a desirable privacy-utility tradeoff, and systematically study three cost-effective algorithms for being used in the proposed framework: evolutionary, Bayesian, and reinforcement learning. Our experiments, for hyperparameter tuning in DPSGD conducted on MNIST and CIFAR-10 datasets, show that these three algorithms significantly outperform the widely used grid search baseline. As this paper offers a first-of-a-kind framework for hyperparameter tuning in DPSGD, we discuss existing challenges and open directions for future studies. As we believe our work has implications to be utilized in the pipeline of private deep learning, we open-source our code at https://github.com/AmanPriyanshu/DP-HyperparamTuning.
翻译:与典型的 SGD 不同,私人数据集无法多次用于DPSGD的超参数搜索,例如,通过网格搜索。因此,极有必要进行算法,在特定搜索空间内找到近最佳的超参数,以达到最佳的可实现的隐私-利用权取舍。我们将此问题发展成一个总体优化框架,以建立可取的隐私-利用权取舍,并系统研究三种成本效益高的算法,供拟议框架中使用:进化、贝叶西亚和强化学习。我们关于DPSGD在MNIST和CIFAR-10数据集上进行超参数调整的实验表明,这三种算法大大超出了广泛使用的网格搜索基线。由于本文为DPSGD的超参数调换换提供了一个首个类似框架,我们讨论了现有的挑战和未来研究的方向。我们认为,我们的工作在私人深层学习的管道中具有影响。