Tuning the hyperparameters in the differentially private stochastic gradient descent (DPSGD) is a fundamental challenge. Unlike the typical SGD, private datasets cannot be used many times for hyperparameter search in DPSGD; e.g., via a grid search. Therefore, there is an essential need for algorithms that, within a given search space, can find near-optimal hyperparameters for the best achievable privacy-utility tradeoffs efficiently. We formulate this problem into a general optimization framework for establishing a desirable privacy-utility tradeoff, and systematically study three cost-effective algorithms for being used in the proposed framework: evolutionary, Bayesian, and reinforcement learning. Our experiments, for hyperparameter tuning in DPSGD conducted on MNIST and CIFAR-10 datasets, show that these three algorithms significantly outperform the widely used grid search baseline. As this paper offers a first-of-a-kind framework for hyperparameter tuning in DPSGD, we discuss existing challenges and open directions for future studies. As we believe our work has implications to be utilized in the pipeline of private deep learning, we open-source our code at https://github.com/AmanPriyanshu/DP-HyperparamTuning.


翻译:与典型的 SGD 不同,私人数据集无法多次用于DPSGD的超参数搜索,例如,通过网格搜索。因此,极有必要进行算法,在特定搜索空间内找到近最佳的超参数,以达到最佳的可实现的隐私-利用权取舍。我们将此问题发展成一个总体优化框架,以建立可取的隐私-利用权取舍,并系统研究三种成本效益高的算法,供拟议框架中使用:进化、贝叶西亚和强化学习。我们关于DPSGD在MNIST和CIFAR-10数据集上进行超参数调整的实验表明,这三种算法大大超出了广泛使用的网格搜索基线。由于本文为DPSGD的超参数调换换提供了一个首个类似框架,我们讨论了现有的挑战和未来研究的方向。我们认为,我们的工作在私人深层学习的管道中具有影响。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Nested Policy Reinforcement Learning
Arxiv
0+阅读 · 2021年10月6日
Arxiv
32+阅读 · 2021年3月8日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员