In lattice quantum field theory studies, parameters defining the lattice theory must be tuned toward criticality to access continuum physics. Commonly used Markov chain Monte Carlo (MCMC) methods suffer from critical slowing down in this limit, restricting the precision of continuum extrapolations. Further difficulties arise when measuring correlation functions of operators widely separated in spacetime: for most correlation functions, an exponentially severe signal-to-noise problem is encountered as the operators are taken to be widely separated. This dissertation details two new techniques to address these issues. First, we define a novel MCMC algorithm based on generative flow-based models. Such models utilize machine learning methods to describe efficient approximate samplers for distributions of interest. Independently drawn flow-based samples are then used as proposals in an asymptotically exact Metropolis-Hastings Markov chain. We address incorporating symmetries of interest, including translational and gauge symmetries. We secondly introduce an approach to "deform" Monte Carlo estimators based on contour deformations applied to the domain of the path integral. The deformed estimators associated with an observable give equivalent unbiased measurements of that observable, but generically have different variances. We define families of deformed manifolds for lattice gauge theories and introduce methods to efficiently optimize the choice of manifold (the "observifold"), minimizing the deformed observable variance. Finally, we demonstrate that flow-based MCMC can mitigate critical slowing down and observifolds can exponentially reduce variance in proof-of-principle applications to scalar $\phi^4$ theory and $\mathrm{U}(1)$ and $\mathrm{SU}(N)$ lattice gauge theories.
翻译:在 lattie 量子实地理论研究中, 定义 lattice 理论的参数必须调整为进入连续物理学的临界值 。 通常使用的 Markov 链 Monte Carlo (MCMC) 方法在这一限制下会受到严重减速的影响, 限制连续外推法的精确性。 当测量操作者在空间时间上广泛分离的关联功能时, 会出现进一步的困难: 对于大多数相关功能来说, 当操作者被广泛分离时, 就会遇到一个指数性严重的信号到噪音问题 。 首先, 我们根据基因化的流基模型来定义一个新的 MCMC 算法 。 这些模型利用机器学习方法来描述高效的近似样本来分配利益。 独立绘制的流基样本随后被作为建议, 在一个星系精确精确的 Metopolis- Hastings Markov 链中。 我们处理的是将利息的配对齐性, 包括翻译和测量的对称。 我们第二个引入了一种“ 效率化” Monte Carlo 的计算方法, 以正价调的精确度的调为基础, 可以减少对等的变数, 我们的变数的变数的变数的变数, 和变数的变数, 和变数的变数的变数的变数的计算法, 我们的变数的变数的变数的变数的变数的变的变法, 。