In this paper we study the statistical properties of Laplacian smoothing, a graph-based approach to nonparametric regression. Under standard regularity conditions, we establish upper bounds on the error of the Laplacian smoothing estimator $\widehat{f}$, and a goodness-of-fit test also based on $\widehat{f}$. These upper bounds match the minimax optimal estimation and testing rates of convergence over the first-order Sobolev class $H^1(\mathcal{X})$, for $\mathcal{X}\subseteq \mathbb{R}^d$ and $1 \leq d < 4$; in the estimation problem, for $d = 4$, they are optimal modulo a $\log n$ factor. Additionally, we prove that Laplacian smoothing is manifold-adaptive: if $\mathcal{X} \subseteq \mathbb{R}^d$ is an $m$-dimensional manifold with $m < d$, then the error rate of Laplacian smoothing (in either estimation or testing) depends only on $m$, in the same way it would if $\mathcal{X}$ were a full-dimensional set in $\mathbb{R}^d$.


翻译:在本文中, 我们研究Laplacian 滑动的统计属性, 一种基于图形的回归非参数法方法。 在标准的常规条件下, 我们为 Laplacian 滑动估计值的错误设定了上限值 $\ wloyhat{ f} $, 并且基于$\ 宽度 {f} $, 并且基于$\ bloyhat{ f} $。 这些上界值匹配了第一个阶级 Sobolev 类的最小最大最佳估计和合并率 $H1 (\ mathcal{\ cal{ { mathb} {R} $是美元=xcseteq=$\ mathb{ 美元和 1\leq d < 4$; 在估算问题中, $d = = 4$, 和 4美元。 此外, 我们证明Laplacecan 滑动是多重适应的: 如果 $mall a max roup a way (如果在完全的测试中, rb) 将取决于 Lacal a way (美元) a exb) a slupleb) a plupleb) a way

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
0+阅读 · 2021年7月25日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
图表示学习Graph Embedding综述
AINLP
34+阅读 · 2020年5月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员