Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.


翻译:Stein的Gaussian进程近似法可以用来限制对光滑功能的预期值(c ⁇ adl ⁇ ag随机流程的$h$)与对精通目标随机流程的相同功能的预期值(Z$)之间的差别。 不幸的是,对光滑功能的类别来说,这很容易做到,这是非常有限的。在这里,我们证明是无限的维度高斯平滑的不平等,使功能类别能够大大扩大 -- -- 例如,利普西茨在统一指标方面的功能,以及任意事件指标 -- -- 以换取在界限上失去精确度。我们的不平等表现在光滑测试功能的界限上,预期的功能值为X$,这与典型的紧凑性标准密切相关,对Z$的预期值类似,对于设定的美元指标,美元/mathb{P}的概率(Z\ k ⁇ ta\setminus K ⁇ _\\\\\\\theta},目标进程接近$的界限。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
0+阅读 · 2021年7月26日
Optimization on manifolds: A symplectic approach
Arxiv
0+阅读 · 2021年7月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员