Learning rate scheduler has been a critical issue in the deep neural network training. Several schedulers and methods have been proposed, including step decay scheduler, adaptive method, cosine scheduler and cyclical scheduler. This paper proposes a new scheduling method, named hyperbolic-tangent decay (HTD). We run experiments on several benchmarks such as: ResNet, Wide ResNet and DenseNet for CIFAR-10 and CIFAR-100 datasets, LSTM for PAMAP2 dataset, ResNet on ImageNet and Fashion-MNIST datasets. In our experiments, HTD outperforms step decay and cosine scheduler in nearly all cases, while requiring less hyperparameters than step decay, and more flexible than cosine scheduler.


翻译:在深神经网络培训中,学习进度调度器一直是关键问题。 已经提出了多个调度器和方法,包括步态衰减调度器、适应性方法、焦线调度器和周期性调度器。 本文提出了一个新的排期方法,名为双曲分流衰减(HTD ) 。 我们在几个基准上进行了实验,例如:CIFAR-10和CIFAR-100数据集的ResNet、宽ResNet和DenseNet、PAMAP2数据集的LSTM、图像网络的ResNet和时装-MNIST数据集。 在我们的实验中,HTD几乎在所有情况下都比步态衰减和焦线排排表都快,同时比步衰减要求的超光度计要少,比线排程要灵活得多。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年12月26日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
9+阅读 · 2018年5月24日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员